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Abstract
There are many cryptographic protocols in the literature that are scientifically and mathematically sound. By extension,
cryptography today seeks to respond to numerous properties of the communication process beyond confidentiality (secrecy),
such as integrity, authenticity, and anonymity. In addition to the theoretical evidence, implementations must be equally
secure. Due to the ever-increasing intrusion from governments and other groups, citizens are now seeking alternatives ways
of communication that do not leak information. In this paper, we analyze multiparty computation (MPC), which is a sub-field
of cryptography with the goal of creating methods for parties to jointly compute a function over their inputs while keeping
those inputs private. This is a very useful method that can be used, for example, to carry out computations on anonymous data
without having to leak that data. Thus, due to the importance of confidentiality in this type of technique, we analyze active
and passive attacks using complexity measures (compression and entropy). We start by obtaining network traces and syscalls,
then we analyze them using compression and entropy techniques. Finally, we cluster the traces and syscalls using standard
clustering techniques. This approach does not need any deep specific knowledge of the implementations being analyzed. This
paper presents a security analysis for four MPC frameworks, where three were identified as insecure. These insecure libraries
leak information about the inputs provided by each party of the communication. Additionally, we have detected, through a
careful analysis of its source code, that SPDZ-2’s secret sharing schema always produces the same results.
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1 Introduction

In the process of designing cryptographic protocols, it first
has to be proposed and submitted with associated theoretical
proof, to provide evidences that the protocol is secure under
a predefined set of assumptions. However, these proofs do
not provide any guarantees regarding practical implementa-
tions, thus it is necessary to demonstrate that the theoretical
model, that supports the protocol,matches the technical secu-
rity assumptionsmade in an actual implementation. This task
is hard and normally relies on domain-specific knowledge,
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as such novel ways are needed to test the robustness and
security of crypto protocols implementations.

There is a vast literature on theoretical security proofs
of cryptographic protocols that are poorly implemented that
lead to risks associated with the exposure of private, anony-
mous and sensitive data. Due to the importance of these
security issues, there has been a growing interested on anal-
ysis and detection of such errors in applications and libraries
of such protocols [1–4].

Communications are one of the first factors that we must
protect in cyberspace. There are cryptographic protocols for
various types of communications; one of the most interesting
is to protect each person’s personal information, even when
both parties want to make computations using anonymized
data. The well-known millionaire’s problem is an example,
where both parties want to know whom is richer but without
knowing the salary of each other. In this case, MPC proto-
col can be used and consists of two or more parties, where
each party has their own secret input. MPC computes some
joint function f that receives as input each party’s secret
data (in the case of the millionaire’s problem, the function
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is something like: f = input1 ≤ input2, where input1 and
input2 corresponds to the salary of each party). Neither party
obtains any information on the inputs of the other. At the end
of the protocol, each party receives the result of the function,
without the inputs being revealed [5].

General MPC algorithms are inefficient in practice with
regards to communication complexity; most solutions rely
on the existence of a synchronous network and are often
not secure against dynamic adversaries [6]. For this rea-
son, the main motivation focuses on the study of potentially
(in)secure practical implementations,which do not guarantee
that they comply with the security properties of the protocol,
despite being usually written by expert cryptographers.

As there are a considerable number of libraries, with com-
pletely different implementations and technical assumptions,
an automated method is necessary to validate these libraries
without resorting to the analysis of the whole source code. In
2004/2005, Cilibrasi and Paul [7] introduced a new method
of data clustering based on compression. Good results have
already been obtained with this method in several domains,
namely applied to internet traffic analysis [8], which is simi-
lar to what we intend to do. Themethod starts by determining
the similarity (distance) between each pair of objects, com-
puted from the length of the compressed data files, and then
a hierarchical clustering method is applied. This method is
very interesting as it is feature-free, there are no parameters
to tune, and no domain-specific knowledge to use [9].

We argue that this method may help to reduce the time
it takes for security vulnerability analysis. In fact, as the
hierarchical clustering method can be quite slow, we also
use standard clustering techniques to speedup this process.
Generally, the analyses are performed by exploring the code
to find security vulnerabilities, or by collecting information
from pieces of data that the protocol sends to other devices.
This tool has the ability to do the security vulnerability
analysis automatically. Our analysis has been performed by
collecting a set of program traces and applying techniques
from (algorithmic) information theory to perform cluster
based on the input. In case of changes in the protocol, we
can also easily change and perform a new security analysis,
instead of reanalyzing the whole code.

This work focuses on testing a relevant set of MPC pro-
tocols by using software packages and tools [10–14] which
the research community is using to test and develop theMPC
systems.Wemainly focus on systems that use secret sharing,
garbled circuits and/or oblivious transfer.

1.1 Contributions

This work has the following main contributions:

1. Setup and analyze the privacy security property of MPC
in some of the most cited MPC frameworks: SPDZ-2,
ABY, TinyLego and DUPLO;

2. Simulation of a passive attack using the tcpdump tool,
which allows the adversary to “sniff” all traffic passing
through the data network;

3. Simulation of an active attack through the use of STrace,
which traces the execution of a particular program (or
process), and intercepts and records the calls it makes to
the system functions and their respective return signaling;

4. Evaluate the traces of both tools (for passive and active
attacks) by using CompLearn and similar tools to apply
compression techniques to the process of discovering and
learning patterns, i.e., to identify the similarity between
the objects. Then, apply clustering techniques in order to
understand if it is possible to cluster the data, i.e., if it is
possible to join communications with the same inputs in
the same cluster;

5. Explore and analyze the source codeof oneof the libraries
to understand the problem or implementation errors. We
analyze the source code of the SPDZ-2 [15].

6. Explore and identify similar vulnerabilities onotherMPC
frameworks. This does not require the analysis of the the-
oretical model because we can cluster the information
only by analyzing the information extracted from the net-
work packets. We can produce results in other paradigms
or some variants of MPC: secret sharing, garbled circuits
and/or oblivious transfer.

Our work is useful to other researchers in both security
and multiparty computation domains. The combination of
the normalized compression distance (NCD) with the tools
for obtaining network traces and system calls, as well as the
combination of clustering techniques, provides a complete
tool-set that can be used to analyze other frameworks that
implement other cryptographic protocols. As already stated,
it is important to know if there are errors that compromise
security in cryptographic protocol implementations, as the-
ory alone is not enough. This tool can aid this detection and
find data leak problems, namely with MPC algorithms as
explored in this work.

1.2 Related work

Webeginwith a description of theNCDandMPCpreliminar-
ies in Sect. 2. In Sect. 3, we describe the libraries’ setup, and
all the setups of the MPC problem and inputs. In Sect. 4,
we present the attack overview with a description of the
remote attacks (passive) and local attacks (active) with all
the premises of each other. In Sect. 5, we present the results
of these attacks. Finally, Sect. 6 presents the low-level code
analysis of the SPDZ-2 framework, to identify the vulnera-
bilities of the protocol implementation.
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1.3 Related work

There are already some approaches in the literature that
address privacy computation and its adversaries. We will
present some approaches related to the detection of network
attacks and also some work that has been done in this area
to contextualize and motivate the use of compressors, which
have already been tested in other contexts.

Acar [2] presents analysis of some libraries that implement
some cryptographic protocols. In this paper, it is analyzed
the usability and the security of the library, by analyzing the
features and documentation that alsomatter for security. This
is an example of a work in the literature that makes tests of
the libraries available on GitHub.

Orlandi [16] presented security models and the latest
advances in multiparty computation in a paper titled “IsMul-
tiparty Computation Any Good in Practice?”. For an MPC
protocol to be secure, some properties must be satisfied, such
as input privacy and output correctness.

Wehner [8] showed how techniques based on Algorithmic
Information Theory, also known as Kolmogorov complex-
ity, can help in the analysis of internet worms and network
traffic. Using compression, different species of worms can
be clustered by type. Compression is also used to under-
stand different types of network traffic and to help detect
traffic anomalies. This technique could become a useful tool
to detect new variations of an attack and thus help to prevent
IDS evasion.

CompLearn [17] is an open-source implementation of
NCD used for clustering and classification with a wide range
of applications. Its creators originally demonstrated its appli-
cation in: genomics, virology, languages, literature, music,
character recognition and astronomy [7]. Subsequent work
has applied it to plagiarism detection, image distinguishable,
machine translation evaluation, database entity identifica-
tion, detection of internet worms, malware phylogeny and
malware classification, to namea few [18].Borbely presented
a work [18] with an example of the application of NCD for
classifying malware.

2 Theoretical background

2.1 Normalized compression distance

NCDfirst proposed byLi et al. [19] is the real-world approach
to the notion of normalized information distance (NID).
Clustering byNCD is a practical implementation of themath-
ematical notion of Kolmogorov complexity. In the scope of
statistical or clustering methods, it is important to measure
the absolute information distance between individual objects.
NIDmeasures the minimal quantity of information sufficient
to translate between two objects; however, it is also non-

computable. NCD is a computable approximation of NID
using standard compressors. These concepts can be com-
bined in order to create a way of analyzing data (data mining)
and to remove redundancy of objects, thereby allowing their
agglomeration.

Some experiments regarding the impact of NCD in clus-
tering [7] show that NCD is a (quasi-)universal similarity
metric relative to a normal reference compressor. To apply
NCD to the difference between files, we need to choose a
standard compressor to make an approximation of the small-
est representation of the program.

NCD(x, y) = C(xy) − min(C(x),C(y))

max(C(x),C(y))
(1)

In Formula 1,we give as the input two different files (x and
y). C(xy) represents the size of the resultant file by the com-
pression of the concatenation of x with y, andC(x) andC(y)
represent the size of the compression of x and y, respectively.

NCD is a function that gives values in the interval 0 ≤ r ≤
1+e representing how different the two files are. NCD closer
to 0 represents more similar files, and results closer to 1 are
more distinguishable files. The e is due to imperfections in the
compression algorithms, but for most standard compression
tests performed by Li et al. [19], it is unlikely to see an e
above 0.1.

With NCD, we can compute the NCDmatrix. This matrix
allows us to compare and cluster files according to their sim-
ilarity with other files in the dataset, depending on the NCD
value.

2.2 Multiparty computation

MPCwas formally introduced as secure two-party computa-
tion in 1982 [20–22].

AndrewYao introduced themillionaires’ problem in 1982,
the seminal secure multiparty computation example/prob-
lem. The scenario consists of two parties whom are both
interested in knowing which of them is richer without reveal-
ing their inputs (i.e., their actual wealth). In this scenario,
each party uses respective inputs x and y denoting their
salaries. The goal is to find the highest salary, without reveal-
ing their respective salaries. Mathematically, this can be
achieved by computing:

f (x, y) = max(x, y)

At the end of the protocol, each participant will get only
the result of the function f , without getting anything else
about the other party’s input, i.e., the secret inputs will not
be revealed.

This protocol has to ensure two main security properties:
Privacy The inputs are never revealed to other parties;
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Correctness The output given at the end of the computa-
tion is correct.

These security guarantees are to be provided in the pres-
ence of adversarial behavior. There are two classic adversary
models that are typically considered: semi-honest (where
the adversary follows the protocol specification but may try
to learn more than allowed from the protocol transcript)
and malicious (where the adversary can run any arbitrary
polynomial-time attack strategy) [23].

3 MPC libraries overview

For the security tests, the MPC frameworks presented in
[24] were used. First, we chose the most cited libraries
that in turn implemented the most cited protocol variants of
secret sharing and garbled circuits: SPDZ-2 [10] and ABY
[11]. Also, we chose two different libraries of the LEGO
paradigm: TinyLEGO [13] and DUPLO [14] to see if there
are problems in implementation, as DUPLO is descending
from TinyLEGO with different paradigms.

In each library, it was used theYao’smillionaire’s problem
with two parties.

To simulate this situation in terms of input, we use the
world’s wealthiest tech billionaires according to the list com-
piled and published by Forbes [25]. The total net worth of
each individual on the list is estimated, in US dollars, based
on their assets and debt accounting.

3.1 SPDZ-2

SPDZ-2 is a software implementation for the SPDZ and
MASCOT secure multiparty computation protocols. This
implementation is open-source and is available on GitHub
[15].

In the SPDZ-2 library, there are some examples of MPC
programs. One of them was presented in the SPDZ tuto-
rial at the TPMPC 2017 [24] workshop in Bristol. It is
called tpmpc_tutorial and provides a millionaires problem.
We choose this one because we want to use a well-known
multiparty computation problem as Yao’s millionaire’s prob-
lem [20].

In this case, it is necessary to perform a real MPC
computation—P1 shares a and P2 shares b—and reveal the
comparison of the values.

The code of the millionaire’s problem is provided in
the (Code 1). val = sint.get_input_from(i) is used to get
input for party i and share secretly into val. This reads
input for party i from Player-Data/Private-Input-i which
is the location where the private input is placed when it
is generated. The s.reveal() function reveals the response
0 if the numbers are different and 1 if the numbers are

equal. For these tests, we use the commit that has the SHA:
7d55d01010ca69c310d74272c5b991fbebe3a7b7.

Code 1: SPDZ-2 implementations of Yao’s Millionaire’s
Problem

alice = sint.get_raw_input_from(0)
bob = sint.get_raw_input_from(1)

b = alice < bob
print_ln(’The richest is: %s’, b.reveal())

3.2 ABY

ABY is a mixed-protocol framework that efficiently com-
bines secure computation schemes based on arithmetic
sharing, Boolean sharing and Yaos garbled circuits. It makes
available the best practice solutions in secure two-party
computation [11]. The implementation of this protocol is
open-source and is available on GitHub [26].

This implementation includes the millionaire’s problem
in its source code on GitHub. Therefore, we only had
to change the input of the millionaire’s problem from
the random input that is provided by default (Code 7
in “Appendix A”). The commit used in this work was:
c189ff6d45000890185e503bbfbec89914bb497f.

3.3 TinyLEGO

TinyLEGO is a protocol for general secure two-party com-
putation (2PC) [13], the first published implementation of
the LEGO paradigm for 2PC. There is an open-source
implementation available on GitHub [27] with a C++14
implementation. The code builds on the SplitCommit imple-
mentation of the [FJNT16].

To prepare the library for the millionaires problem, we
must choose the circuit representations of common crypto-
graphic functions that are typically used to benchmark MPC
protocols. In the library, circuits are available from Bristol
[28], and so we chose the “Comparison 32-bit Unsigned
LTEQ” circuit which is in accordance with the focus of the
millionaires problem. The circuit corresponds to the million-
aires problem, since it does LTEQ which means less than
or equal. We converted the values from the list of billion-
aires to 32-bit binary. For these tests, we use the commit
336e116e9f6db7430d3c56648d7fd9b7ed3e48f2.

3.4 DUPLO

DUPLO is an approach for malicious secure two-party com-
putation [14]. There is an implementation in C++ of this
approach available on GitHub [29].
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The preparation of the library for inputs and the million-
aire’s problem is the same as for TinyLEGO. In the same
way, we chose the “Comparison 32-bit Unsigned LTEQ”
circuit which is in accordance with the focus of the mil-
lionaire problem, because the circuits available for this
library are the same as the ones provided in TinyLEGO
by Bristol [28]. We also convert the values from the
list of billionaires to 32-bit binary. We use the commit
0d14ad0a225d8f2355549d64eac6330ceba 1f47c for these
tests.

4 Attacks overview

In this section, we will describe two types of attacks that we
will make on the frameworks: passive and active attacks. In
the passive attack simulation, the attacker only needs to be in
the same network layer as one of the victims, and in this way,
be able to sniff the packets that pass through the network by
tcpdump. However, we can also execute attacks without need
of elevated privileges to the machine, just by having permis-
sions to exchange the executable file (user permissions). For
this, we perform an active attack, where the attacker needs
to find the executable of the MPC program in the local file
system of one of the players in the communications. Then,
it has to replace this executable with a new one, where the
attacker collects the information provided by the STrace tool.
The use of these tools allows us to do a statistical analysis of
the protocol, and to categorize the information that at a given
moment is passing in the network. We use these two tools to
demonstrate that there is leak of information in a local envi-
ronment (a malicious user can tries to subvert the protocol
through STrace). Alternatively, an attacker can be passive by
only inspecting the contents of the packets that are observed
with tcpdump.

We constructed amiddleware system that consisted in two
parts:

4.1 First phase: the attacker computes all the input’s
possibilities

The middleware stores all possible combinations of tcpdump
captures. Then, it must apply a clustering task to sort and
correlate the captures. For this, we choose a technique called
NCD, which measures the similarity between the captures,
generating a similarity matrix of N × N dimensions, where
it compares all the elements with each other. So, now, the
middleware has all the datasets generated (i.e., the similarities
between the captures), and now, it needs to apply a clustering
method (such as clear in data mining) to the similarity matrix
that will generate the clusters using the table generated by
the NCD.

In brief, the first phase consists in four steps:

Fig. 1 First phase

1. Gather all possible inputs;
2. Generate tcpdump or STrace captures for all input com-

binations;
3. Compute NCD matrix;
4. Cluster aggregation based on NCD.

We can see in Fig. 1 the connection between the mid-
dleware and the network layer to gather the captures of all
inputs.

4.2 Second phase: the attacker collects/compares
real information

The middleware has the information of the previous phase,
that is, all information clustered by inputs. It does not cate-
gorize any information regarding the identity of the person
in the communication, but rather of their data.

In this case, the middleware needs to receive or collect
real information through captures (STrace or tcpdump) and
compare with all the captures it has stored, so it can cluster
the data using the clara algorithm, and then repeat the process
using this new sample according to the cluster that belongs to,
i.e., that most closely resembles. In this way, the middleware
can disclose the input through the group to which it belongs.

In brief, the second phase consists in three steps:

1. Intercept communications and gather the captures of the
real communication;

2. Collect the cluster aggregation from the step 4 of the first
phase;

3. Classify the real data into one of the clusters.

For demonstration purposes, from now on, wewill refer to
the information transmitted as the user’s name, that is, what
we are categorizing is the inputs of each millionaire, but we
refer to that information by the name of each one.
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Fig. 2 Communications between four players

4.3 Setup

For both attacks (passive and active), we use themillionaire’s
problem described in Sect. 2 with the top four wealthiest
tech billionaires as inputs. For each sample, it is used as a
communication between two parties, i.e., between two out
of four billionaires, as the inputs. Each communication is
repeated five times with the same input to have more samples
of the same communication, to be able to apply the clustering
method.

In the first phase, we started by testing with all the inputs
provided by the list of the billionaire’s (96 inputs) using 10
runs. However, as we are going to use the CompLearn to
demonstrate the results, we had to reduce the inputs and the
repetitions, as the construction of the square distance matrix
and the computation of the best-fitting unrooted binary tree
is a computationally hard problem [30]. In order to solve this
problem, we used only 4 × 5 (inputs × repetitions) to speed
up and simplify the process.

In these tests, we are simulating a real communication
situation between four billionaire’s. The idea is to cluster the
information of the communications according to the input’s
of the billionaire’s. The attack is not focused on the identity
of the people, but rather on the input they exchange, as one
of MPC’s properties is that the only information that can be
inferred about the private data is whatever could be inferred
from seeing the output of the function alone.

As we can see in Fig. 2, we used four billionaires: Bill
Gates, Jeff Bezos,Mark Zuckerberg, and Larry Ellison, who
have net worth of $84.5 B, $81.7 B, $69.6 B and $59.3 B,
respectively. We used each of the inputs of the billionaires
as both sender and receiver to simulate all communications.
The generation of all the inputs allows producing a result
similar to a rainbow table where all the possible combina-
tions of inputs are computed. The idea is to gather a new
communication sample, where the inputs are not previously
known, and compare with the table of inputs.

4.4 Global premises

There are some assumptions that have to be considered in the
setup of each framework in order to be able to carry out the
attacks:

– All libraries have a limitation on the size of each input;
– The set of inputs that the tool accepts is finite and can
be binary or an integer in the case of the millionaire’s
problem;

– DUPLO and TinyLEGO frameworks: The inputs have to
vary more than 0.04 in entropy1 value, considering the
entropy value between 0 and 1.

4.5 Remote attacks (passive)

Apassive attack involves someone listening to the communi-
cation exchanges. An example of this is an attacker sniffing
network traffic using a protocol analyzer or some other form
of introspection. The attacker finds a way to connect to the
local network and captures the traffic for further analysis
(including port mirroring).

For this, we start by using tcpdump2 to analyze the traffic
through the network (Listing 3 on “Appendix B”) on each
communication.

The traffic is captured and then used to evaluate the NCD
between them. The use of compressors, implicitly, allows the
attack to analyze the similarity between traces of communi-
cations traffic, in order to comprehend the kindof information
being sent and to be able to distinguish the communications
through their similarity.

The captured network traffic has a timestamp as an
attribute that is a random property that can change the com-
pression value. As we are measuring the distance between
objects by applying NCD, it makes sense to remove times-
tamps because it is a component that is not controlled by
us and varies between captures. This makes the compression
index different between otherwise identical samples. For this
reason, the attribute -t is placed in tcpdump. By taking the nor-
mal interface parameters, we have only the -w which writes
the raw packets to a file rather than parsing and printing them
out. We also use the attribute -n to filter only TCP packets
because that is what MPC uses. Also, we do not consider IPs
at all, we only gather information regarding the communica-
tion data.

1 Entropy is a measure of unpredictability of information content [31].
2 tcpdump is a tool that allows to inspect the traffic passing through
the data network. Like all sniffers, tcpdump can be used for good (e.g.,
detecting communication errors), but also for evil (e.g., capturing per-
sonal data).
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In this case, tcpdump is used to capture the traffic passing
through the network bymultiparty computation, so that it can
be cluster by compression techniques.

Attack Specific Premises
In the passive attack with tcpdump, we have some assump-
tions:

– The attacker does not need access to the machine;
– The attacker needs access to the same network (running
the multiparty computation protocol), as one of the com-
munication parties.

4.6 Local attacks (active)

Active attacks adulterate the normal flow of information by
changing its content and producing untrustworthy informa-
tion, usually with intent to compromise the security of a
system.

For this, we start by using STrace3 to save the captures for
analysis with compressors and data mining clustering.

The use of STrace is related to the high number of per-
missions required by tcpdump if the attacker does not have
access to the network where one of the victims is, but can
gain access to the users device. For this reason, we do not use
tcpdump because it makes an active attack more difficult.

In brief, when we make an active attack in which we have
to enter the victimsmachine,we have two possible situations:

– Wemake a passive attack by running the tcpdump, but we
would have the same problem of obtaining root access to
the machine, which in many situations is complicated;

– Otherwise, we use STrace and just by changing the exe-
cutable (this step only requires user normal permissions),
we are able to gather information through STrace.

We used STrace in different modes (Listing 4 in
“Appendix B” with the example of the network mode). It is
possible to collect information of specific system call group,
i.e., the access to local files. We used three different options
of trace, namely: memory, network and file. First, we start
by testing an approach similar to tcpdump, but with STrace,
to capture the network traffic with the network option. Then,
to get better insight into the memory usage and system calls,
we used the option memory. Finally, we used the option file
to track file-related syscalls.

Attack Specific Premises
In the active attack with STrace, we have some assumptions:

3 STrace allows the attacker to observe the systemcalls used by an appli-
cation. STrace is useful because it can help the user to better understand
what the system does during program execution, which can be a great
help in tuning performance and resource management.

– The attacker does not need network access (unlike the
passive attack), but needs access to the machine;

– The attacker does not need to have any elevated privi-
leges; only a standard user account on the machine, at
most.

4.7 Evaluationmetrics

This section describes the results obtained with the corre-
spondent setup of CompLearn to produce the NCD matrix.

CompLearn
In order to analyze the dataset from the brute force attack, we
used theCompLearn library to compute the NCD, construct-
ing a distance matrix. The entries of this matrix will be the
distances between each pair of traces, i.e., how similar they
are. The first line of the Listing 1 represents the computation
of the NCD matrix, the -d represents the directory where the
user wants to perform the analysis with the NCD, and the
next argument is the name of the directory. After this, the
output is the NCD matrix produced by CompLearn. As this
is a more compact form of gathering information, we are in a
position to apply clustering algorithms. After this, we could
pass the NCD matrix file to maketree (line 2) to create an
unrooted binary tree. The result of maketree is a file with the
name treefile.dot that describes how the nodes of the tree are
related to each other and the correspondent label. After this,
we can use the command line script neato available in the
package graphviz (presented in the line 3) filter for drawing
undirected graphs in a .png. In brief, CompLearn uses the
exact quartet method to produce a ternary tree in which the
leaves represent the files and the branches represent similari-
ties between them. At each step, the algorithm tends to refine
the tree by modifying the sub-trees. Each resultant tree is
associated with a value of S(t) which indicates how well the
matrix is represented by the tree.

Listing 1 Executed commands to produce the NCD results

1 ncd -d 427000/ 427000 > NCDmatrix.clb
2 maketree NCDmatrix.clb neato
3 -Tpng treefile.dot > ncd-unrooted.png

5 Evaluation

The communication schemes presented in Fig. 2 contain six-
teen communications repeated five times each, to perform
the clustering. However, to perform the maketree, the num-
ber of communications is too high, as would make the tree
too big to analyze (Fig. 6 in the “Appendix E”). In order to
simplify this process, only one billionaire, Bill Gates, will be
the sender of the communication.
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Fig. 3 Gates communications scheme

In order to do these tests, we used input sizes nine and
twelve because of the limitations of the input size of ABY
and SPDZ-2, respectively. We also tested with input size six
because we found a reasonable salary value below which
would be a very low value to be compared, i.e., with a lower
value, the binary would be small and the number of zeros
would be very high. In addition, the only test that would
make sense in this case would be the SPDZ-2 so we chose
not to do these tests.

5.1 Passive attack

Figure 3 represents the first communications established by
Bill Gates. In this attack, we take advantage of the informa-
tion captured by tcpdump in a way that the capture can be
clustered and compared with new traces. This will create a
real model where, based on this cluster, we can classify any
new communications into one of the four groups of connec-
tions (by clusters).

To show the results of this attack, two binary trees will be
used, the first with an example of a vulnerable library and the
second for a secure library; the problems associated with the
implementation of the vulnerable library will be tested with
multiple input sizes.

Figure 4 shows an unrooted binary tree of the SPDZ-2
framework that clusters as leafs the tcpdump captures of the
communications between two peers analyzed using NCD.
Each name represented in the leaves has the following con-
figuration: first the number of the iterations (from 0 to 4)
followed by the name of the sender and then by the second
peer of the communication. An example of such communica-
tion is one of the leaves under the red circle: (3_gates_bezos)
that represents the fourth iteration of the communication
between Gates and Bezos. However, the names of billion-
aire’s represent their inputs, and not their identity.

The red circle in Fig. 4 represents the cluster of the
communications between Gates and Bezos; these commu-
nications include five captures of the network traces. The
representation of Fig. 4 also allows us to see that the remain-
ing inputs of billionaires are split also in branches where we

Fig. 4 Unrooted binary tree with the entire gates communications
scheme in SPDZ-2

Fig. 5 Unrooted binary tree with the entire gates communications
scheme in ABY

can split the communication input represented by Gates with
the remaining inputs of the billionaires, separated by clus-
ters. This is a small representation of Fig. 6 in “Appendix
E” where we show all of the communications matched in a
tree, and where all repetitions of the same communication
are kept in a separate branch of the tree.

Figure 5 represents the cluster of secure communications
between Gates and the other players in the ABY framework.
The resultant tree is associated with the value of S(t) which
indicates howwell thematrix is represented by the tree. How-
ever, in this case, the S(t) is approximately 0.80, and this
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means that the fit between the matrix and the tree is not as
good as the tree represented in Fig. 4, where the value of S(t)
is approximately 0.99. However, in this unrooted binary tree
(Fig. 5), we can see that the data are not split by communi-
cations between two players, because there is not any part of
the tree that has Gates communicating with the same player
in the same cluster. This means that the ABY framework,
using NCD, is not leaking information to the network in this
situation, as opposed to the SPDZ-2 framework.

Figures 4 and 5 represent the results for an input size of 6.
Table 1 shows the results that we obtained through the

NCD and datamining tools (clara algorithm) for all theMPC
frameworks tests with different inputs for tcpdump.

The information in Table 1 considers the inputs given
to the brute force middleware. In cases where the input is
an integer, the program receives an input size of 6 (the net
value of the billionaire, e.g., 845,000); otherwise, it receives
a binary conversion of this input to 32 bits (because we use
the default binary-circuit-based MPC and FHE implementa-
tions as already described in Sect. 3.1). This conversion to
binary leads to situations where a library is vulnerable and
others where it is not, as we can see in Table 1.

Table 1 represents three insecure libraries and one that is
secure. The most insecure library is SPDZ-2, where we can
see that for any input, the library is leaking information only
with tcpdump. The TinyLEGO and DUPLO libraries have a
leak of information when using a standard 32-bit comparison
circuit. The secure library, or the most secure based on this
test, is ABY, where we cannot cluster information based on
the network captures.

In the search for the reason why both DUPLO and
TinyLEGO libraries were vulnerable to an input of size 12
rather than size 6 led to the study of the inputs based on the
entropy values between 0 and 1 (represented in Table 2). To
obtain the values in the table, we used Approximate Entropy
(ApEn)4 by using ap_entropy from PyEEG Python Module
(Listing 7 from “Appendix D”).

The security of both libraries is ensured by the similarity
between the output samples provided by the libraries to the
network (related with the similarity of the entropy values),
butwhen the difference between the entropy values increases,
the clustermethodology can detect the difference in the infor-
mation exchanged through the network. This vulnerability is
interesting because security properties tend to increase in
order to enhance robustness. However, in this situation, the
opposite is happening: When we increase the values being
exchanged, we increase the entropy and consequently the
ability to exploit this vulnerability.

4 Approximate Entropy is a technique used to quantify the amount of
regularity and the unpredictability of fluctuations over time-series data
[32].

Table 1 Comparison table

Input size
MPC framework Input type 6 9 12

ABY Int � � X

TinyLEGO Bin � � �
DUPLO Bin � � �
SPDZ-2 Int � � �
� = Vulnerable;
X = Limitation of the framework; not applied;� = Not vulnerable;

Table 2 Entropy table

Input size
Billionaires 6 9 12

Bill Gates 0.498 0.593 0.637

Jeff Bezos 0.489 0.602 0.569

Mark Zuckerberg 0.497 0.571 0.571

Larry Ellison 0.497 0.609 0.637

The entropy shows that the difference between the binary
representations of these numbers varies according to the size
of the integers which are represented in binary. For numbers
less than 9, the binary has to pad 0s to the left of the number,
which makes the entropy values very similar. However, for
entropy values for the input of size 12, we have a range of
values of [0.569 to 0.637], which makes the values more
distinct. An example of the binary values ofGateswith inputs
size 6 and 12, respectively, can be seen in the Listing 6 in the
“Appendix D.”

5.2 Active attack

This attack has been done using the same communications
rounds used in the previous passive attacks. In this test, we
used STrace focused on the network traffic, but without the
need of access to the network or escalated privileges. Table 3
shows the results of the vulnerability tests. ABY has a lim-
itation, because we cannot use an input of the size 12. We
can assess that SPDZ-2 is vulnerable to all input sizes, while
ABY is not. DUPLO starts to leak information when using a
small input size (6), but does not classify all the information
within the correct cluster. However, it can partially classify
the information, as it is capable of having good results in the
20 samples (5 times for each of 4 communications). With
an input size of 9, we have 6 communications incorrectly
classified, and with an input size of 12 we only have 3 com-
munications in thewrong cluster. For this reason,we consider
it a “partial vulnerability” because it has some incorrectly
classified instances.
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Table 3 Comparison table, of STrace command results

Input size
MPC framework Input type 6 9 12

ABY Int � � X

TinyLEGO Bin � � �
DUPLO Bin � �� ��
SPDZ-2 Int � � �
� = Vulnerable;
X = Limitation of the framework; not applied;�� = Partial vulnerable;� = Not vulnerable;

6 Low-level code analysis

We will now discuss the implementation issues that we
uncovered during the assessment of SPDZ-2. We have
described in the previous section that both passive and active
attacks use compressors, they are capable of extracting more
information than they should, due to the similarity between
samples within the same millionaire’s problem values.

In this section, we describe the code-level analysis used to
understand the security properties of MPC that were missing
from this implementation. For this, we start by searching for
the similarity (NCD-based) between TCP traffic in the code.
There were three steps that we used to assess this:

1. Network socket detection;
2. Unpack the network socket information;
3. Check the implementation of secret sharing.

In the network socket detection (Step 1), we started by
searching the entry points of the network socket5 and col-
lected the information sent to the socket, in order to perform
the brute force attack. We performed multiple tests with the
same input on both clients, and the result is the same infor-
mation sent to the other side. In Step 2, it is possible to see
the unpacked version of this data in a readable example.

The information extracted from Step 1 is packed before
being sent to the network layer of the program. In order to
understand the information sent, we analyzed the moment
after the unpack and obtained some numbers. The code from
the Listings 2 is responsible for receiving the values from the
network socket where, in line 9, they are unpacked. When
the program needs the input, it calls the function GetValues,
also available in Listings 2. In this function, it is possible to
print the entire information from the vals variable.

5 A network socket is an endpoint to the communication flow between
two programs running over a network.

Listing 2 Code from SPDZ-2

1 void MAC_Check<T>::AddToValues(vector<T>&
values)

2 {
3 vals.insert(vals.end(), values.begin(),

values.end());
4 }
5 void MAC_Check<T>::ReceiveValues(vector<T>&

values, const Player& P, int sender)
6 {
7 P.receive_player(sender, os, true);
8 for (unsigned int i = 0; i < values.size();

i++)
9 values[i].unpack(os);

10 AddToValues(values);
11 }
12 void MAC_Check<T>::GetValues(vector<T>&

values)
13 {
14 for (typename vector<T>::iterator it =

vals.begin() ; it != vals.end(); ++it)
15 {
16 cout << "\t \033[1;31m " << *it <<

"\033[0m\n ";
17 }
18 ...
19 }

The variable vals prints the information that came from
the network (Listing 5 in “Appendix B”), and these numbers
are always equal to the results from the previous interactions.
The numbers thatwe got before the unpack, we suspected that
they were related with the secret sharing schemes according
to the stages displayed. Also, there was a correspondence
between the number of stages with the total number of ele-
ments in the vector vals. So, SPDZ-2 implementation in
regards to the secret sharing and MAC produces always the
same result for the same values of input. This is clearly an
implementation issue.

This vector has another interesting feature. The SPDZ-2
has the ability to create and modify the programs, for exam-
ple, the millionaire’s problem. The programs are specified
in a specific language “.mpc,” created by the library. There
is the possibility of getting private or public input; but for
both, the option reveal() can be used. The reveal() func-
tion reveals the secret values and, for example, we can reveal
the inputs for both parties.

To test this difference in the implementation, we used the
reveal() option to print the information and see the differ-
ence. We found the number in clear text ready to be received
by the other client; so, in this situation, the reveal() option
removes the entire security of the library. We know that, in
fact, if we use a reveal() call in the program, that means that
all parties have agreed to this and that the computed func-
tion also reveals this secret; however, the problem here is that
SPDZ-2 sends the value in clear text to perform this reveal()
function. Despite the agreement of both parties, the value is
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not only shared between them, but are also readable to any
attacker on the network.

As specified in [10], “the high-level idea of the online
phase is to compute a function represented as a circuit, where
privacy is obtained by additive secret sharing the inputs and
outputs of each gate, and correctness is guaranteed by adding
additive secret sharing of MACs on the inputs and outputs of
each gate.” The two security properties are not assured in this
implementation. These properties (privacy and correctness)
are the most basic ones that a multiparty computing protocol
must ensure.

7 Conclusions

In this article, we reviewed the security of relevant MPC
implementations and assess their level of security. In our
assessment, only one library showed good results ensuring
security in our attack scenario.

Our results suggest that existing implementations ofMPC
protocols are vulnerable to a network traffic analysis, just
by computing all the possible combinations of inputs. We
distilled high-level findings derived from our initial attack in
the SPDZ-2, where the implementation of the secret sharing
always produces the same results in the source code.We offer
a suggestion for debugging this type of system, as a future
direction for library design and possibly to further research
in the field.

For future work, we would like to extend the deployment
of our tests in the remaining open-source libraries and other
cryptographic protocols, and to also patch the current imple-
mentations in such a way that they could become secure
against this type of attack. Also, there is the need for tools
that could reliably test these security systems regarding the
user interference in the process. Furthermore, NCD imple-
mentations need to be revamped to allow their deployment
and use by non-experts.

Some of the libraries, not featured in this article, do not
allow this test by using virtual machine communication.
Some of the tools use ssh, which is detrimental to this line of
research as they use mechanisms that rely/trust on central-
ized approaches, and worst, try to achieve security through
obfuscation.

The insights and results gained throughout this work high-
light the necessity of using open-source resources where
researchers can study and deploy this type of approach, in
an effort to build a secure open-source ecosystem).
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Appendix A: Millionaire’s problem code

The Code 7 represents the ABY code that allows the imple-
mentation of the millionaire’s problem. In this case, we read
the input from a local file and, to perform the brute force, we
just need to rewrite a file and rerun the program to have a
different example.

Appendix B: Commands

The listings shows the commands used to produce the file
of the output traffic of the protocol: network (Listing 3) and
STrace (Listing 4). The machine that runs this process needs
to have all the communications in the interface lo in idle, in
order to have only the information correlated with the MPC
process in the captures.

Listing 3 tcpdump command

tcpdump -eni lo -t -n tcp -w example.pcapng

Listing 4 STrace command

strace -f -e trace=memory -s 10000 python
startMPC.py

Appendix C: Output of code analysis

We have to analyze the values printed from the secret sharing
(Listing 5), in order to seewhether this output is always equal
in all the iterations with the same set of inputs.

Listing 5 Values variable

1797484165
-61705647039824681916694312663146678231
-36761208276779888592191149434901166533
15902840325947545570244179796300984094
...
33815892615659681644195482679118018626
1
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Fig. 6 Tree with the entire clustering of the brute force attack

Appendix D: Entropy value influence

The padding of zeros can influence the entropy values. The
following example shows two different input sizes (salary of
Bill Gates) converted to 32 bits binary. We can see that if
we convert only 6 digits of salary (896 000), we have a lot of
padding of zeros at the left (00000000000011001110010011
001000). The same does not occur in the input size 12
(896000000000 - 11000100101111011110110011000010).
It may be detrimental to have padding of zeros left, as entropy
is influenced in the wrong way.

Listing 6 Binary values of Bill Gates with input size 6 and 12

1 Size 6: 00000000000011001110010011001000
2 Size 12: 11000100101111011110110011000010

Weuse thepython commandpyeeg to calculate the approx-
imate entropy, used to present the entropy results in this paper.

Listing 7 Approximate Entropy Command

pyeeg.ap_entropy(a,2,0.1)

AppendixE: SPDZ-2maketreewith complearn

Figure 6 represents the entire tree generated by complearn.
The tree contains a high S(T ) value, but the representation in
some situation is complicated to visualize. In order to help
the identification of different clusters, it has performed a set
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Code 7: Input ABY

(role == SERVER) {
std::ifstream file1("input1.txt");
std::string str1;
std::getline(file1,str1);
std::istringstream reader1(str1);

uint32_t bob_money;
reader1 >> bob_money;
s_alice_money =

circ->PutDummyINGate(bitlen);
s_bob_money = circ->PutINGate(bob_money,

bitlen, SERVER);

cout << "\nBob Money:\t" << bob_money;
} else { //role == CLIENT

std::ifstream file2("input2.txt");
std::string str2;
std::getline(file2,str2);
std::istringstream reader2(str2);

uint32_t alice_money;
reader2 >> alice_money;
s_alice_money =

circ->PutINGate(alice_money, bitlen,
CLIENT);

s_bob_money = circ->PutDummyINGate(bitlen);
cout << "\nAlice Money:\t" << alice_money;

}

of “blue cuts” in the tree. This way, we can visualize a cluster
flowing branch until the leaves.

In a highlight perspective, the tree can split each one of the
traces connected to a similar example where we see all the 16
different types of communications perfectly split accordingly
in the tree. The similar traces are formed of the same party’s
communicating with a number from 0 to 4 where an exam-
ple can be 0_gates_zuck and 2_gates_zuck. Here, both are
the same communication but in a different iteration, where 0
represents the first communication and 2 the third commu-
nication. This example has a communication between Gates
and Zuck, where Gates is the initiator of the communication
and Zuck the other party in the communication protocol.
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